

EAI-432, a mutant-selective allosteric EGFR inhibitor for L858R-mutant lung cancer

David A. Scott¹, Thomas W. Gero¹, Jie Jiang^{2,5}, Tyler S. Beyett^{1,4}, Ciric To^{2,5}, David Heppner^{1,4}, Praful Gokhalle³, Nathanael S. Gray^{1,4}, Pasi Jänne^{2,5}, and Michael J. Eck^{1,4}

¹Department of Cancer Biology, ²Lowe Center for Thoracic Oncology and Department of Medical Oncology, ³Belfer Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ⁴Department of Biological Chemistry and Molecular Pharmacology, ⁵Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.

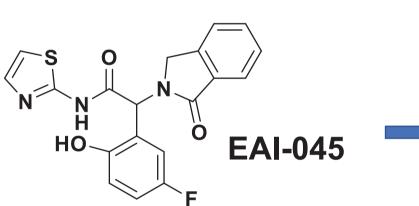
Introduction

• About a third of all non-small cell lung cancer (NSCLC) patients have EGFR mutations. By far the most common mutations are exon19 deletions and the L858R point mutation, which account for approximately 45% and 40%, respectively, of EGFR-mutant NSCLC.

• The 3rd generation EGFR TKI osimertinib is standard of care therapy for patients with these mutations, and is also effective against the treatment-acquired T790M mutation that confers resistance to 1st generation EGFR TKIs gefitinib and erlotinib.

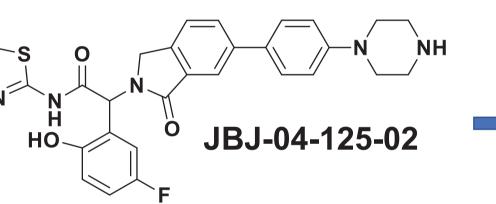
• Like all 3rd generation EGFR TKIs, osimertinib relies on formation of a covalent bond with Cysteine 797 in EGFR. Mutation of this cysteine residue (C797S, C797A) is an important mechanism of treatment-acquired resistance (e.g. L858R/C797S and L858R/T790M/C797S).

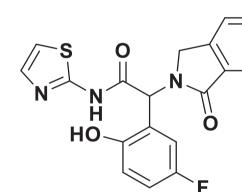
• Other mutations in the EGFR ATP-site also confer resistance to ATP-site inhibitors (L718X, L792F, G796S). Together with C797X (7 to ~12%), these on-target mutations in EGFR account for up to ~15% of osimertinib resistance, representing a major unmet need.¹


• In addition, most of the benefit of osimertinib vs. 1st gen EGFR TKIs is in exon19del patients. It offers little improvement in overall survival in L858R patients.

• Due to the prevalance of CNS metastases, brain penetration is important for new therapeutics in this space. • Our development candidate EAI-432 is specifically designed to address these unmet needs. It is a highly mutant-selective allosteric inhibitor effective against EGFR L858R, L858R/C797S, and L858R/T790M/C797S.

Discovery of allosteric EGFR inhibitors at DFCI

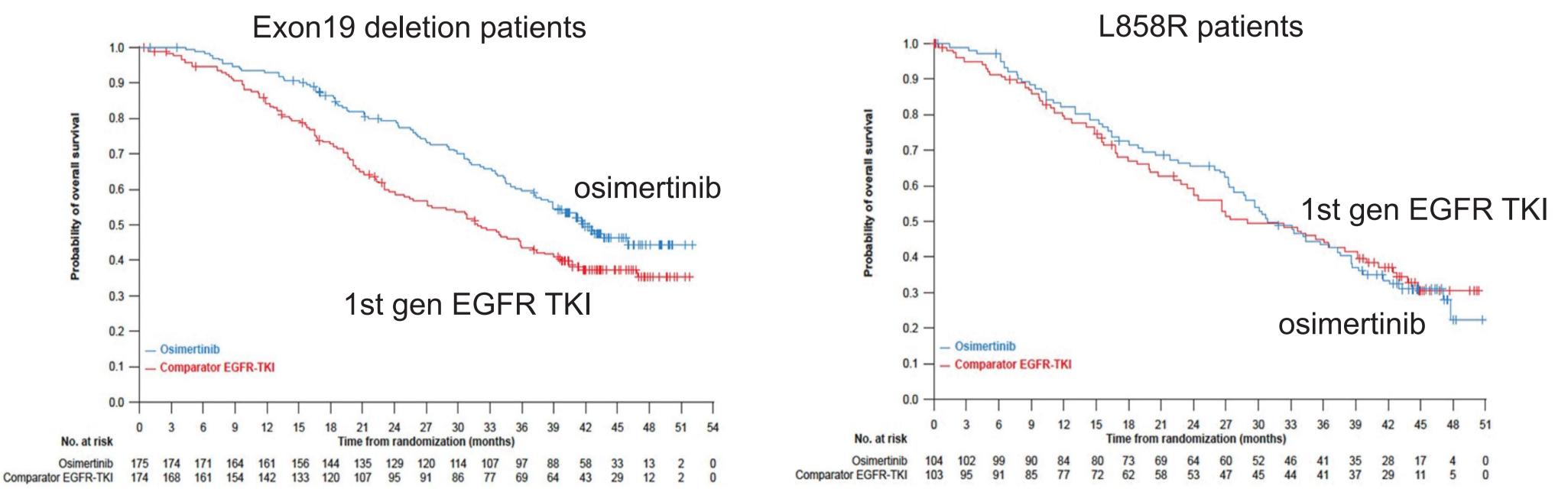

Collaboration between the Eck, Gray, and Jänne Labs


Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors *Nature* 2016 (ref. 2)

Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor Cancer Discovery 2019 (ref. 3)

An allosteric inhibitor against the therapy resistant mutant forms of EGFR in non-small cell lung cancer Nature Cancer 2022 (ref. 4)

This isoindolinone series was the starting point for an industry collaboration that led to our development candidate EAI-432.


Development path for EAI-432

• Conduct initial trial and seek approval in EGFR L858R+ patients who develop resistance to osimertinib due to treatment-acquired mutations in EGFR (C797S, L718Q, G719S, etc).

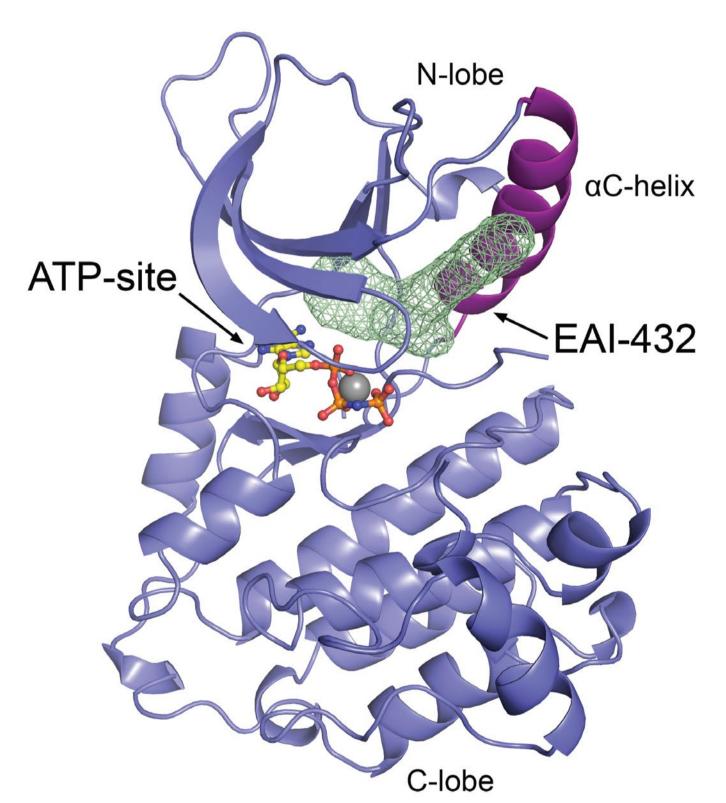
- Expansion to first line for EGFR L858R+ lung cancer as combination with osimertinib or other compatible 3rd generation EGFR TKI..
- Combination with our allosteric inhibitor is relevant to $\sim 40-50\%$ of the total osimertinib patient population.

Opportunity for front-line impact in L858R+ patients

FLAURA study showed that osimertinib does not improve overall survival in L858R patients relative to 1st generation EGFR TKIs (Ramalingam et al. NEJM 2020)⁵

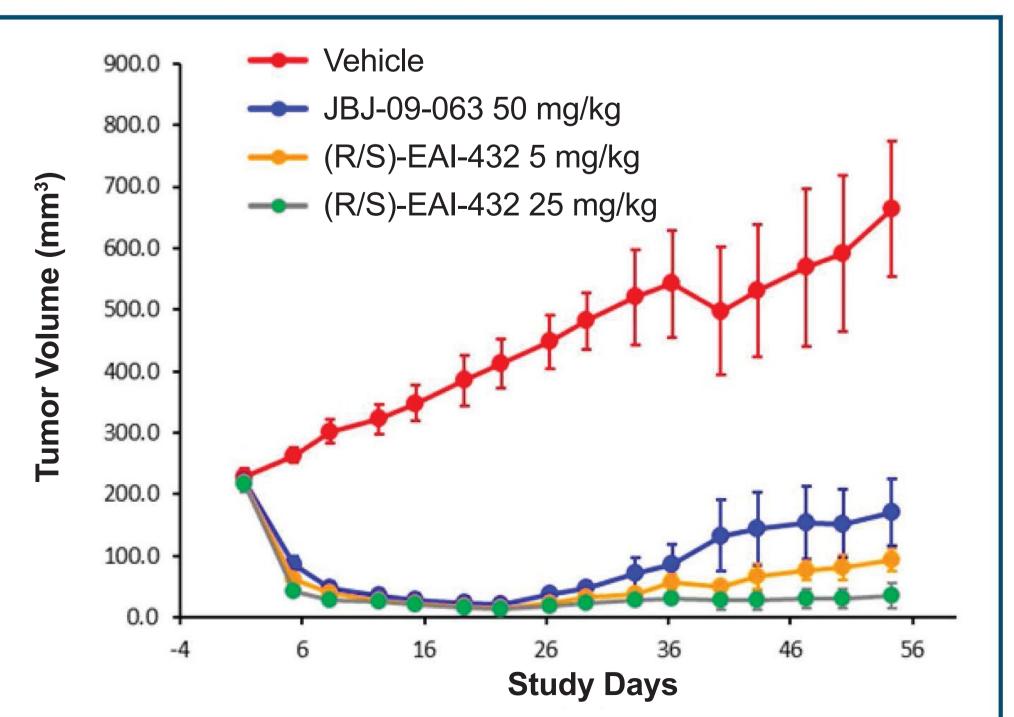
EAI-432 co-binds EGFR with osimertinib. Will "double-drugging" the mutant receptor with EAI-432 plus osimertinib improve outcomes for L858R+ patients?

JBJ-09-063

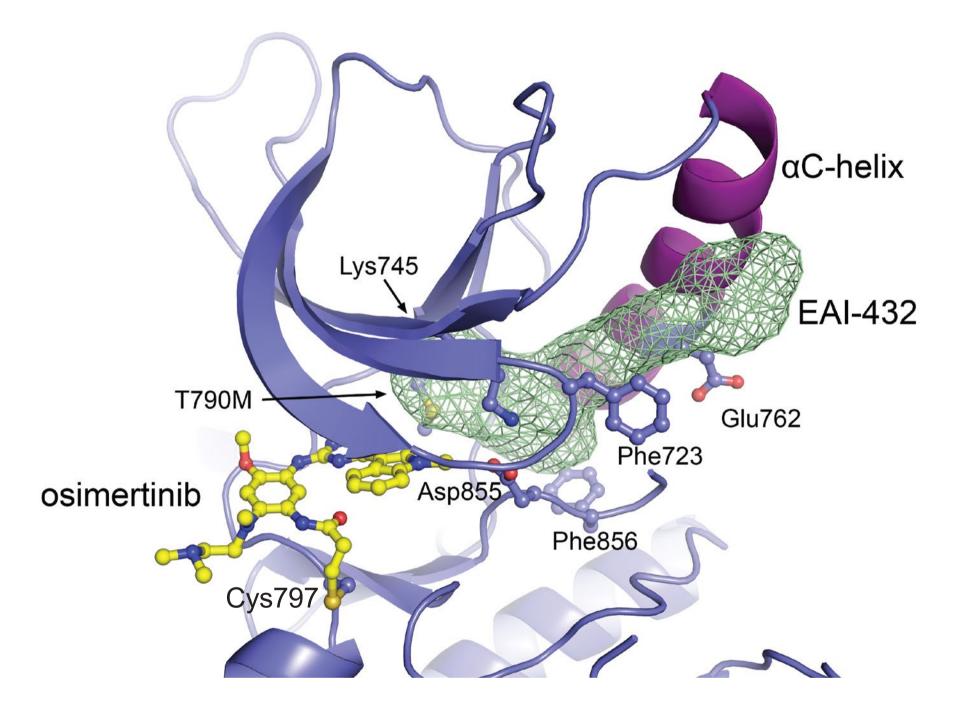

EAI-432 is potent across all EGFR L858R mutants

Inhibition of proliferation in L858R mutant Ba/F3 cell lines and A431 cells (WT EGFR).

Cpd	L858R Cell IC ₅₀ (µM)	L858R/T790M Cell IC ₅₀ (µM)	L858R/C797S Cell IC ₅₀ (μM)	L858R/T790M/ C797S Cell IC ₅₀ (μM)	EGFR wt Cell IC ₅₀ (μM)	A431 Cell IC ₅₀ (μΜ)
EAI045	>10	3.82	>10	1.89	>10	>10
JBJ-09-063	0.013	0.008	0.028	0.007	2.68	3.14
EAI-432	0.010	0.004	0.014	0.004	1.75	1.87
gefitinib	0.011	>10	0.033	>10	0.11	1.32
osimertinib	0.005	0.013	>10	>10	2.89	0.31
BLU945	0.051	0.003	0.126	0.004	1.54	>10

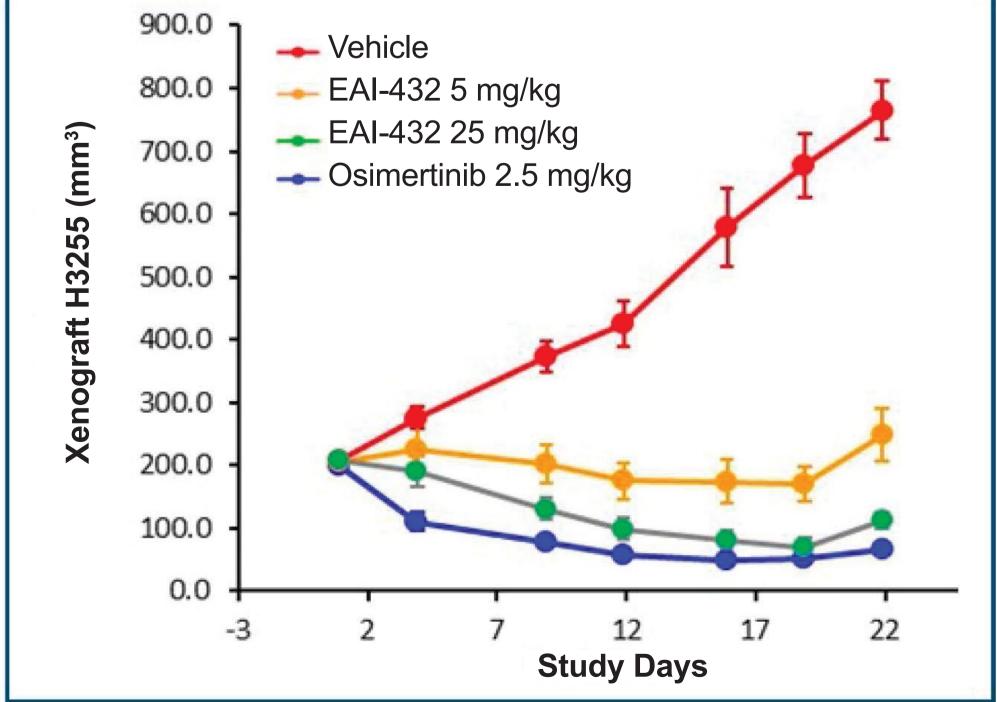

EAI-432 co-binds with osimertinib

The allosteric site occupied by EAI-432 is adjacent to the ATP-site


Co-crystal structure of EAI-432 and an ATP analog bound to T790M-mutant EGFR. EAI-432 is shown in a surface representation (green mesh).

PDX DFCI52 (L858R/T790M) + C797S

Mice were dosed PO for 21 days QD with the indicated compounds. EAI-432 was dosed as a racemate in this study. The C797S mutation was introduced in the patient-derived DFCI52 cell line using CRISPR.


EAI-432 and osimertinib can bind simultaneously to mutant EGFR

Co-crystal structure of EAI-432 and osimertinib bound to T790M-mutant EGFR. EAI-432 locks the kinase in an inactive conformation with the C-helix (purple) displaced from the active site.

EAI-432 has good efficacy in mouse xenograft models

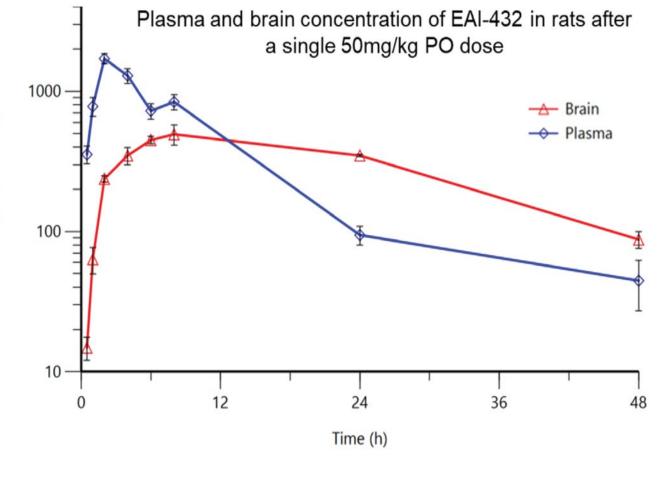
Mice were dosed PO for 21 days QD with the indicated compounds. EAI-432 was dosed as the active (R) enantiomer.

	A	avanta	ages o	ot our	allos	[e			
 EAI-432 is specifically developed for L858R EGFR and its re EAI-432 can co-bind with osimertinib. The co-binding mechanism is an occupancy and efficacy m unbind to allow the other to bind, leaving an <i>active</i> receptor in approach, both can bind simultaneously, and if one dissociates EAI-432 should delay or prevent emergence of resistance d Because of its distinct binding site, different mutations are requ ATP-site inhibitors. It is difficult to combine two ATP-site kinase inhibitors due to site kinome-wide selectivity of EAI-432 recommends it as a com 									
E	AI-4 3	2 has	s good	d oral	PK an				
Hepatocyte stability	Mouse	Rat	Dog	Monkey	Human				
In vitro CLint (µL/min/million cells)	4.3	15.6	11	<2	4.3				
Species	(1	IV CI ml/min/kg)	T1/2 (hr)	Vd (L/kg)	F%				
Rat (IV 1mpk, PO 5	mpk)	19	4.5	5.6	55	ĺ			
Dog (IV 1mpk, PO 5	mpk)*	19	11.7	16	43				
Monkey (IV 0.5mpk, P	O 3mpk)	2.9	22.6	5.0	51				
*Dog PK was measur	ed with the	racemate,	all other PK	data with th	ne R enantic) m			
EAI-4 H1975 (L858R/T7			ctive i						
A Vehicle \Rightarrow EAI-432 \Rightarrow \Rightarrow EAI-432 \Rightarrow \Rightarrow Osimertin 10 ⁹ 10 ⁹ 10 ⁹ 10 ⁷ 10 ⁶ 10 ⁵ 10 ⁴ 10^{4} 10^{1	5 mg/kg 25 mg/kg		banazozioi B g g g b b b a b b a b b b b b b b b b b	R1C3/MI5432	Group 1, Mouse 7 Control 0.2 mL/20g PO QDx2 Day 12 Day 12 Day 26	1 D A A A A A A A A A A A A A A A A A A			
				Su	mmar	y			
 EAI-432 is a potent and mutant-selective allosteric EGFR inf EAI-432 has good oral PK and is brain-penetrant. EAI-432 has efficacy in multiple L858R+ tumor models at low Our allosteric EGFR inhibitors have exquisite kinase selectiv IND-enabling studies are in progress, to be completed 2H 20 									
			A	l ckno	wledg	In			
Earlier work on the development of allosteric EGFR inhibitors Pharmaceuticals, with significant contributions from Courtney C Huang, Sandeep Pusalkar, Mike Smith and Yongbo Hu. Rat ar Monkey PK and rat Kpuu studies were conducted at Evotec. Pro efficacy model was conducted at LabCorp. We thank the Mark Foundation for Cancer Research for their generous support of t									
		10	n unen ge						
				Ke'	ferenc	JE			

1. Passaro et al., Nat Cancer. 2021 2:377-392 2. Jia et al., Nature. 2016 534:129-32.

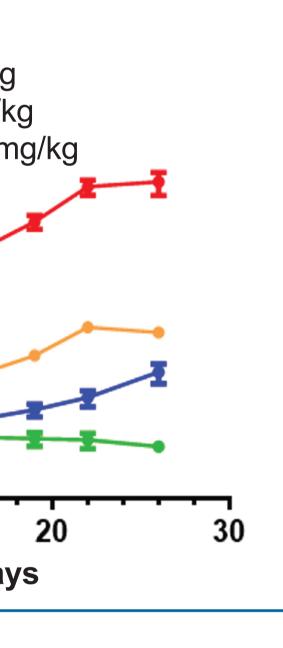
Advantages of our allosteric approach

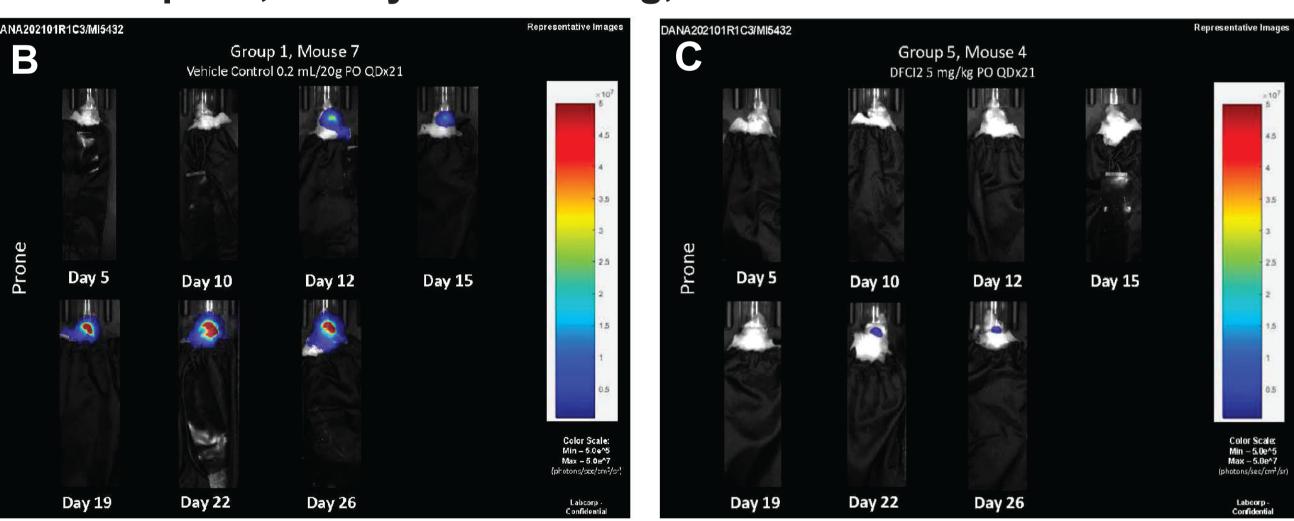
resistance variants. It spares WT EGFR.


multiplier. With two ATP-site drugs, one must the interim. With the allosteric plus ATP-site the receptor remains *inhibited*.

due to second-site mutations in the receptor. quired to confer resistance as compared with

o overlapping off-target toxicities. The exquimbination agent.


d is brain penetrant


Rat Kp,uu = 0.49

al H1975-luc model

s oral dosing, QD

an intracranial H1975-luc NSCLC brain metasanial anti-tumor efficacy of EAI-432 and osimertinib uminescence imaging. B and C, Representative with vehicle control, and 5mg/kg EAI-432

hibitor for L858R-driven NSCLC.

ow doses and is well-tolerated in vivo. ivity and minimal activity on WT EGFR.

nents

was conducted in collaboration with Takeda Cullis, Steve Stroud, Krista Gipson, Sampson and dog PK testing was conducted at WuXi. rofiling of EAI-432 in the H1975 intracranial

and the Blavatnik Family Foundation this project.

Keterences

3. To, Jang et al., Cancer Discov. 2019 9:926-943. 4. To, Beyett et al., Nat Cancer. 2022 3:402-417.